Images of SMC Research 1996

Queueing Theory

O.J). Boxma

1. INTRODUCTION

Queueing phenomena occur in several real-life situations when resources
(machines at a factory, elevators, telephone lines, traffic lights) cannot im-
mediately render the amount or the kind of service required by their users.
Also, at byte level in modern data-handling technologies (communication
systems, computer networks) queueing phenomena may arise; they are typ-
ically less visible but their effects at user level are usually not less serious.
Quite often such congestion effects may be adequately studied by mathe-
matical methods from queueing theory. Adopting the abstract terminology
from queueing theory, the object of study is formulated as a network of 221
service units with customers requiring services at those units. The nature
of the arrival processes and service requests 1s usually such that they have
to be represented by stochastic processes. Hence the most important per-
formance measures, like waiting times, workloads and queue lengths, are
random variables. Accordingly, the main techniques of queueing theory
stem from probability theory.

In Section 2 we discuss some elementary phenomena and results from
queueing theory. Section 3 contains a brief history of the past 50 years of
queueing theory, with some of the applications that guided its development.
Section 4 is devoted to polling systems, a class of queueing systems that
recently has received much attention in the literature and at CWI.
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2. KELEMENTARY QUEUEING THEORY
The influence of randomness on queueing processes is often remarkably
strong, and sometimes at first sight counterintuitive. For example, if a
hairdresser spends exactly 12 minutes on each customer, and his customers
arrive at mntervals of exactly 15 minutes, then no customer has to wait. But
if these same customers arrive accordin

» to a Polisson process with an arrival
rate of 4 customers per hour, then they wait 24 minutes on average! And
if, moreover, the service time S spent per customer is negative exponen-

1

tially distributed with mean 12 minutes (i.e. the probability that S exceeds
r equals Pr{S > r} = ¢=*/12 ¢ > 0), then the mean waiting time of a
customer doubles to 48 minutes.

If, in the latter case, an observer enters the shop at a randomly chosen
point 1 time during a service, he might think that the expected time until
completion of that service is one half of 12 minutes, i.e. 6 minutes. But
1t 18 easily seen that the probability that S will exceed & 4+ y, given that
it has already exceeded ., equals e = H9)/12 Je=0/12 — «=u/12 which is the
probability that S exceeds y; this is called the memoryvless property of the
exponential distribution. Hence the residual time until service completion
has exactly the same exponential distribution as S itself, and its mean is
12 minutes mstead of 6. For generally distributed service times, the mean
residual service time equals FS?/2ES, which exceeds ES/2 when service
times are not constant. The intuitive explanation of this phenomenon, the

- T

_
i
*
;

SRR

5.

Soqroure

Framre
FRPPEP

o
Lot-sicke b e

ieitaperned

Aretm
gengied
ot
e

="
FPEEPETI BT R ML
eI AT

ABESrasbLa sere
it s i o s it ¥

¢

S0 brEssrnesne
FRALEIYOER RNt S
Bt i yirehinians

SHEAPEFRPTRL A

YT RIS
SrEpEribafeiyy
FEFEERPR RV EETY

[

At

Figure 1. Queueing theory originated early this century in the study of overload in
telephone exchanges. (Photo: PTT Telecom.
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‘walting time paradox’, is that the observer has a relatively high probability
of entering the shop during a relatively long service (the same phenomenon
explains why, on average, at a bus stop one has to wait longer than half the
interarrival interval indicated by the time table).

The above-mentioned memoryless property is very attractive from a math-
ematical viewpoint: Given the present, it allows one to disregard the past
in studying the future. This is the characteristic of Markov processes, for
which a rich literature has been developed in probability theory. At an
early stage of queueing theory, in the first half of this century, it allowed the
exact analysis of a whole class of ‘Markovian’ queueing systems. Examples
are the loss and delay models developed and analysed by the Danish queue-
ing pioneer A.K. Erlang (1909) with the purpose of dimensioning telephone
exchanges (see also figure 1). Another example is the M/M/1 queue (see
Box). ‘

The M/M/1 queue

This is a queue with Markovian or memoryless (M) interarrival times and
service times, and a single (1) server. The number of customers X in the
M/M/1 queue is also a Markov process, and its steady-state distribution
1s geometric, 1.e., again memoryless: Pr{X = n} = (1 — A/p)(A/p)™, n =
0,1,---. Here A is the arrival rate and p the service rate. The expected
number of waiting customers equals EX,, = EX — M \/p = X /(u(pe — N\)).
Little’s formula gives a (very generally valid) relation between the mean
number of waiting customers EX,, and the mean waiting time EW:

EX., = \AEW, (2.1)

so that for the M/M/1 queue

EW = )\/uﬂ : (2.2)

223
One can now verify that the mean waiting time in the example discussed in
the beginning of this section indeed equals 48 minutes.

3. POST-WAR QUEUEING THEORY

3.1. Development of queueing theory

The post-war technological revolution and the resulting new attitude to-
wards pure and applied science had a strong influence on the development
of queueing theory. Mathematical modelling in economics and management
had always been seriously hampered by the dificulties encountered in the
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numerical evaluation of the analytical models. The development of powerful
computing machinery lowered this ‘numerical’ barrier rather abruptly. A
new discipline evolved: Operations Research, with queueing theory as one
of its fastest growing branches.

Not only as a branch of Operations Research, but also as a branch of
Applied Probability, queueing theory attracted the interest of professional
mathematicians after the Second World War. Around 1950. the mathemati-
cal theory of stochastic processes had reached a certain maturity. Brownian
motion and noise phenomena, investigated by physicists in the first quarter
of the century, and biological processes such as the development of epi-
demics and the growth of bacteria populations appeared to be accessible
for probabilistic modelling. Around 1950, too, monographs on stochastic
processes became available, and the appearance of Feller’s faimmous book An
Introduction to Probability Theory and its Applications turned out to be a
andmark in the development of stochastic modelling. Under the influence
of Feller’s exposition the techniques required for the analysis of stochastic
models were systemized, and were investigated on their merits and on their
potential for obtaining numerical results. The influence of these develop-
ments on queueing theory was strong, the more so since queueing models
turned out to be a gratifying testing ground for many techniques devel-
oped 1n subfields of Probability Theory like Renewal Theory, Birth-and-
Death Processes, Branching Processes, Fluctuation Theory and, in partic-
ular, (semi-)Markov Processes.

In The Netherlands, . van
antzig (one of the founding fa-
thers of SMC, see figure 2) began,
shortly after the Second World
ar, to teach courses in prob-
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ability and mathematical statis-
tics. His teaching has been very
influential on the development of
these fields in The Netherlands.
In particular he may be consid-
ered to have laid the foundations
or the strong international posi-
1on of Dutch applied probabilists.
Van Dantzig’s interest in the ap-
plication of mathematics has also
been a stimulus to the develop-
ment of probabilistic Operations
Figure 2. D. van Dantzig. Research in The Netherlands.
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In 1953, D.G. Kendall published what was to become one of the most
influential papers in queueing theory [4]. In it he analyzed the M/G/1
queue- -a single server queue with Poisson arrival process and generally
(G) distributed service times. The queue length process no longer has the
Markov property. Kendall showed an interesting way to circumvent that
problem. He observed that the queue length process at the successive epochs
(points in time) at which a customer leaves the system is again Markovian-
a so-called 1mbedded Markov chain. He was thus able to determine the
steady-state distribution of the queue length process at departure epochs:
that distribution could subsequently be shown to be equal to the steady-
state queue length distribution at an arbitrary epoch. For future reference
we mention the steady-state mean waiting time in the M/G/1 queue:

‘)
AES*
2(1 = p)
here A 1s the arrival rate, S denotes a service time, and p := AES < 1 is the

offered load. Omne can now verify the 24-minute result from the hairdresser
example in Section 2.

EW =

(3.1)

3.2. New stimuli for queueing theory

In the midsixties queueing theory got a new stimulus from the fields of
computer engineering and computer-communication networks. At that time
computer technology had reached a level of development which required a
good 1nsight in the data flow inside the computer as well as in computer
networks. For the latter in particular, the classical single service facilities
did not suffice; networks of service facilities had to be analyzed. For net-
works of M /M/1-like queues, J.R. Jackson and also W.J. Gordon and G.F.
Newell had shown that the explicit expression for the joint distribution of
the queue lengths at the various nodes has a product form (in some cases
1t 18 a product of the marginal queue length distributions). These product-
form results turned out to be very useful for the performance analysis of 225
several basic computer systems, such as the central server system and the
computer-terminal system. Furthermore, computer technology created new
service disciplines, like processor sharing, that also gave rise to some new
product-form results. Landmarks are the beautiful studies of F.P. Kelly and
of F. Baskett, K.M. Chandy, R. Muntz and F. Palacios. In The Netherlands
researchers like J.W. Cohen, A. Hordijk and N.M. van Dijk also made fun-
damental contributions.

Towards the end of the sixties it was recognized that the availability of the
speclal resources and capabilities of many separate computer facilities could
be extended by resource and load sharing; as a consequence, networks of
computer systems, or more generally data communication networks, started
to emerge. In line with its tradition, queueing theory has responded very
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positively to the challenges posed by w technological developments.
12 models tor the phenomenon of col-

Satellite communication led tc
iding transmissions; protocols for n 8sage trausmission 1n local area net-
vorks led to new priority models (like polling models, ¢f. Section 4): flexible

manufacturine and distributec processing

et

yave rise to queueing models witl
complicated dependencies between the arrival processes of custome
at various queues, and between their service Processes.

The effectiveness of queueing theory in handling such problems may to
a large extent be due to the deep understanc mg that has been acquired
for basic queueing models. such as Erlane’s loss mod °l, the M/G/1 queue
and product-form networks. Accordingly. queueng theoryv has established
1tse n indispensable tool in the design and performance analysis of
computer-communication networks. Presently a new keyv topic is coming to

the front: the performance analysis of Broadbaid Integrated Services Digi-
tal Networks (B-ISDN. se
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also figure 3). Such networks allow the simulta-
neous transmission of different traffic types (data, video. voice). Traditional
arrival processes are inadequate for describing the sometinies ursty nature
and long-ranging dependencies of these traffic str

challenges to performance analysts.
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Figure 3. The simultaneous transmission of data, video and voice through broadband
networks presents new challenges to queueing theory. (Courtesy PTT Telecom.
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4. CWI-RESEARCH ON POLLING SYSTEMS

4.1. Introduction

While the activities in CWT’s research group Analysis and Control of Infor-
mation Flows in Networks are not restricted to queueing theory (there is also
much research in random walks, percolation theory and reliability theory,
and in a more distant past many strong contributions have also been made
to Markov decision theory), the group’s core activity in the last few years
has been queueing theory and its application to computer-communication
performance analysis. Of the five Ph.D. theses that have been produced 1n
the group in the nineties, two have been devoted to the analysis and opti-
mization of polling systems [1, 3]. Therefore we now pay special attention
to this class of queueing systems, starting with a motivating example.

Many communication systems provide a broadcast channel which is shared
by all connected stations. When two or more stations wish to transmit si-
multaneously, a conflict arises. The rules for resolving such conflicts are
referred to as ‘multi-access protocols’. The token ring protocol is one such
protocol, that is being used in many local area networks.

In a token ring local area network, several stations (terminals, file servers,
hosts, gateways, etc.) are connected to a common transmission medium 1n
a ring topology. A special bit sequence called the token 1s passed from
one station to the next: a station that ‘possesses the token’ is allowed to
transmit messages. After completion of his transmission the station releases
the token, giving the next station in turn an opportunity to transmit. This
situation can be presented by a so-called polling model.

station

Figure 4. Multi-queueing problems with cyclic service are as common In computer
retworks as in road traffic situations. CWI! has arrived at a conservation law giving
insights into average waiting times for all sorts of customers in such systems.
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4.2. The polling model

A polling model is a single-server multi-queue model, in which the server at-
tends to the queues in cyclic order. The N queues 0y, ..., Qy have infinitely
large waiting rooms. Arrival times of customers at the queues are usually
assuined to occur according to a Poisson process. Service requirements of
customers at a queue are independent, identically distributed stochastic
variables: the same holds for the switch-over times of the server between
queues. Arrival rates, service time and switch-over time distributions may
differ from queue to queue.

A polling model describes the behaviour of a token ring local area network
1 a natural way. The server represents the token-passing mechanism, and
the customers represent messages generated at the stations. Many other sit-
uations in which several users compete for access to a common resource can
also be described by this polling model. Examples are a repairman patrolling
a number of machines which may be subject to breakdown, assembly work
on a carousel 1 a production system, a computer with multi-drop termi-
nals, and a signalized road traffic intersection (see figure 4). Depending on
the application, various service disciplines at the queues may be considered.
Common disciplines are exhaustive service (the server continues to work at a
queue until it becomes empty), gated service (the server serves exactly those
customers who were present when he arrived at the queue) and I1-limnited
service (the server serves just one customer-—if anyone is present—before
moving on to the next queue).

Exact results for waiting time distributions are known when the service
discipline at each queue is either exhaustive or gated. In a recent CWI
report, J.A.C. Resing has shown that a detailed exact analysis (using the
theory of multitype branching processes) is possible for the broader class of
polling systems for which the service discipline at each queue has a so-called
‘branching property’. Hardly any exact results for individual queue lengths
or waiting times are known when this property is violated at one or more
queues. However, even in such a case there exists a simple expression for a
certain weighted sum of all the steady-state mean waiting times; L. Kleinrock
has shown in 1964 that, when all switch-over times between queues are zero:

N N 9

Z,-__l )\IES""
E EW, = p=—— - 4.1
s g 2(1 — p) (4.1)
1= 1

Here EW,; denotes the mean waiting time at (Q;, A; the arrival rate, S;
the generic service time, and p; := \;ES; the offered trathc load; p = X;p;
denotes the total offered load. 'This is called a conservation law: if the
service discipline at a queue is changed, the weighted sum of mean waiting
times (the left-hand side of (4.1)) remains the same, although the individual
mean waiting times may change. Note that this formula is a generalization
of formula (3.1) for the mean waiting time in a single M/G/1 queue.
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4.3. Work conservation and work decomposition

The conservation law is a consequence of the ‘principle of work conservation’.
Suppose that the scheduling policy, i.e., the procedure for deciding at any
time which customer(s) should be in service, has the properties that it does
not allow the server to be idle when at least one customer is present and
does not aftect the amount of service given to a customer or the arrival time
of any customer. Comparing the sample paths of the *workload process’ for
such a system under different scheduling disciplines leads to the observation
that the workload process is independent of the scheduling discipline.

The principle of work conservation has in the past proven to be very
usetul. It enables one to analyze the workload process of queueing systemns
with a highly complicated scheduling discipline as if the scheduling were a
relatively simple one, such as the First Come First Served discipline.

For the token ring local area network mentioned above, the time for the
token to be passed from station to station is in general not negligible. Cor-
respondingly, in the polling model the time the server needs for switching
from station to station has to be taken into account. This fact consid-
erably complicates the analysis: the principle of work conservation is no
longer valid, since now the server may be idle (switching), although there
1s at least one customer in the system. However, under certain conditions
there exists a natural modification of the principle of work conservation for
polling systems with switch-over times, based on a decomposition of the
amount of work in the system [2, 3]. This result states that-——under certain
conditions-—the amount of work in the polling system, V ,;tn, 18 in distribu-
tion equal to the sum of the amount of work in the simpler ‘corresponding’
system without switch-over times, V ,;ihout» Plus the amount of work, Y, at
an arbitrary moment during a period in which the server is switching from
one queue to another:

d y
V’wit}'z. ={<) V’u?it}'l,.(j)’tt,t T Ya (42)

=(4) denoting equality in distribution.
The work decomposition gives rise to similar expressions for a weighted
sum of the mean waiting times as Formula (4.1). We can write

N N ES‘?‘ N 1 N
vaith — Z ESzEqu' T Z Pi QEé — Z szWz -+ ‘2“ Z /\JESf
i=1 ‘ i=1

=1 =1

The first relation splits the mean workload into the mean workload of the
X; w waiting customers and the mean residual workload of the customer 1n

equals ES?/2ES;, cf. the discussion of the waiting time paradox in the
beginning of this essay); the second equality follows from Little’s formula
EX; . = MEW,. Taking means in (4.2) now leads to:

229



230

O.J. Boxma

N N Y
. A\ ESA N
E o, EW,; = pzf”‘l —— 4+ EY. (4.3)
P 2(1 = p) ‘

Denote the mean total switch-over time in one cycle of the server by s, and
| >, . - r :
the second moment by s*). Evaluating EY (cf. [2]) yields:

N N ~ ') ‘)
y . NESS g(2)
. . e 1:]‘ - _,__{ N 1 N . |.
E - szH, £ 2(1‘“"/0) ""p o
y P

N N
S ‘ )
- 1=1

1=1

where EM,; denotes the mean amount of work in Q); left by the server upon
its departure from that queue (when s — 0, the fraction of visits to Q; in
which the server finds @); empty tends to one, and the right-hand side of (4.4)
reduces to the right-hand side of (4.1)). Formula (4.4) has been coined a
pseudo-conservation law. The main difference with Kleinrock’s conservation
law 1s that now the weighted sum of mean waiting times does depend on
the service discipline at each queue, through > EM,. For many service
disciplines, amongst which are exhaustive, gated and 1-limited service, we
are able to determine the right-hand side of (4.4) explicitly.

It 1s also possible to extend the work decomposition property and pseudo-
conservation law to much more general single-server systems with multiple
customer classes |2]. Such pseudo-conservation laws often provide the only
information available in polling and multiclass systems with nonzero switch-
over times. They are therefore of considerable practical importance. One
of the main features of the pseudo-conservation laws is that they are very
useful for testing and developing approximations for the individual mean
waiting times [3]. Such approximations have in turn supplied an approach
for solving various optimization problems, like (i) determine the optimal
visit times in a cyclic polling model [1] (this problem has been studied in a
consultancy for PT'T Telecom) and (ii) determine the optimal visit order of
the stations when non-cyclic polling is allowed.

T'he work decomposition property (4.2) relates the workload in polling
models with and without switch-over times. Such a simple relationship does
not in general exist between the joint queue length processes in both models.
However, when all service disciplines have the above-mentioned ‘branching
property’, then one can also find 1| a surprisingly simple relation between
the joint queue length processes in both models, at particular imbedded
points in time (cf. our earlier reference to [4]!).

Other very recent polling research at CWI has led to the first exact re-
sults for polling systems with multiple servers [1], and to good rules for the
NP-complete problem of the optimal (with respect to a weighted sum of
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mean waiting times) probabilistic allocation of several customer types to a
collection of parallel servers.

4.4. Epilogue

In Section 4 some emphasis has been put on Ph.D. research. In recent years
the emphasis in the group has been shifting somewhat towards postdoctoral
research: several postdocs have worked in the group, supported by grants
from Shell, PTT Research, Esprit and ERCIM.

Finally 1t deserves to be mentioned that, since the early eighties, the group
has strongly benefitted from the advisorship of J.W. Cohen. Through his
research he has contributed, more than anyone else, towards establishing
queueing theory as a mature mathematical discipline within Applied Prob-
ability. Almost ten years after his retirement, his unflagging energy and
love for the mathematical modelling and analysis of congestion phenomena
continue to stimulate his environment.

REFERENCES

1. S.C. BORsT (1994). Polling Systems, Ph.D. Thesis, Tilburg University.

2. 0O.J. Boxma (1989). Workloads and waiting times in single-server
queues with multiple customer classes. Queueing Systems 5, 185-214.

3. W.P. GROENENDIJK (1990). Conservation Laws in Polling Systems,
Ph.D. Thesis, Utrecht University.

4. D.G. KENDALL (1953). Stochastic processes occurring in the theory
of queues and their analysis by the method of the imbedded Markov
chain. Ann. Math. Statist. 24, 338-354.

231



